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Motivation

● Increased use of technology in clinic gives Data 
− EHRs + genomics
− Systems biology/ physiology data (more to come)  

● Trend accelerating: 
− Precision Medicine Initiative in 2015
− Nature Big Data in Biomedicine feature in Nov 2015
− IBM Watson, Google Life Sciences (now Verily), etc. 



 Human genomic variation
and clinical sequencing

 
● 80 million variants identified in human genome (Jun 2015) 

− SNPs
− structural (>50bp; CNV, translocations, etc.)

● High discordance b/t sequencing tech and variant callers (VCs)

● Recent study on VC standardization reported 23% of human genome 
is “difficult”  (i.e. not enough consensus among tools to make 
reasonable prediction)

● Gives low confidence for “predictive” clinical sequencing 



Building better predictive models for 
automated clinical phenotyping
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Rh RBC antigen genes
● Rh RBC antigen genomic region exemplifies 

“difficult”
− Encodes for highly immunogenic antigens on RBC 

membranes

● RhCE and RhD
− Highly similar genes known to undergo complex 

rearrangements 

● 50 known antigens 
− Most significant: D, C, c, E, e 
− Many-to-one relationship haplotypes-to-phenotype 

(e.g. heterozygosity; but also silent variation, etc)

 
● Clinical relevance: 

− Blood transfusion 
− Hemolytic disease of the newborn 



Rh antigen prediction pipeline
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Serological data: 
- D, C, c, E, e
- Phenotype  |-->  binary 5-tuple 
(e.g. (1,0,1,1,0) = DcE, etc.) 

- Use cross-validation 
to assess performance 

Decision Tree: 
- multi-class
- multi-label 
- hierarchical

  Genomic 
feature selection 

WGS Illumina data:  
- 93 subjects  
- Alignment to Grch37
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Feature selection: crude
Build PFM for each sample for each gene's exon, then... 

● Select 
− Whole exome
− Variant positions associated with differential phenotypes: 

● dbRBC, ClinVar, dbSNP, dbVar, etc.  
● Call 'diff_genotype'

● Measure: 
− Categorical: call base with highest frequency
− Position frequency/ max coverage 

● Encode: 

− Encoding  |   Nonencoding 
− e.g. [(1, 4), (2, 3)]  |-->  [(1, 0, 0, 1), (0, 1, 1, 0)] 



For each feature typeset: 

(a) perform 10-fold 
cross-validation with 
DecisionTree classifier 

(b) measure success rate 

Feature typeset
assessment



diff_genotype feature sets



exomic feature sets



Feature selection: fully-featured
● Use well-established bioinformatics tools to better 

characterize and differentiate genomic architectures
− MEME/ DREME: 

● call motifs within exons to eliminate commonalities  across 
genotypes 

● look for motifs in introns that may add specificity 

− Weeder: count motifs 

− HaplotypeCaller: calls SNPs and SV

● Still working on fitting the metrics generated with these 
together    



Future directions
● More data sources: 

− Long-read capable sequencing tech 
− Overlapping primer sets with barcodes
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